The Auslander and Ringel–Tachikawa Theorem for Submodule Embeddings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the search for the self in becketts theatre: waiting for godot and endgame

this thesis is based upon the works of samuel beckett. one of the greatest writers of contemporary literature. here, i have tried to focus on one of the main themes in becketts works: the search for the real "me" or the real self, which is not only a problem to be solved for beckett man but also for each of us. i have tried to show becketts techniques in approaching this unattainable goal, base...

15 صفحه اول

The Auslander-Reiten Conjecture for Group Rings

This paper studies the vanishing of $Ext$ modules over group rings. Let $R$ be a commutative noetherian ring and $ga$ a group. We provide a criterion under which the vanishing of self extensions of a finitely generated $Rga$-module $M$ forces it to be projective. Using this result, it is shown that $Rga$ satisfies the Auslander-Reiten conjecture, whenever $R$ has finite global dimension and $ga...

متن کامل

Injections, Embeddings and the Trace Theorem

We have showed previously that the Fourier transform is an isometric isomorphism on L2 = CcR ∩ L2Rn. In particular, we have a ∀u ∈ L2 ||u||0 = ||û||0 Parseval relation b ∀u,v ∈ L2, u,v0 = û, v̂0 Plancherel relation The results (a) and (b) hold for every test function, and since the test functions are dense in L2Rn, they extend to L2Rn by continuity. Then the Fourier transform can...

متن کامل

The compression theorem II: directed embeddings

This is the second of three papers about the Compression Theorem. We give proofs of Gromov’s theorem on directed embeddings [1; 2.4.5 (C′)] and of the Normal Deformation Theorem [3; 4.7] (a general version of the Compression Theorem). AMS Classification 57R40, 57R42; 57A05

متن کامل

Roberts’ Type Embeddings and Conversion of the Transversal Tverberg’s Theorem

Here are two of our main results: Theorem 1. Let X be a normal space with dimX = n and m ≥ n + 1. Then the space C∗(X,R m ) of all bounded maps from X into R m equipped with the uniform convergence topology contains a dense Gδ-subset consisting of maps g such that g(X) ∩Π is at most (n+ d −m)-dimensional for every d-dimensional plane Π in R m , where m − n ≤ d ≤ m. Theorem 2. Let X be a metriza...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2010

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927870903286843